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coefficients of longltudinal transfer
functions of an airplane (composed of
stability parameters)

amplitude
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damping exponent in e8%
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numerlcal integer or normal acceleration,
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P perlod, sec

hol Laplace transform varlable

Q quantity as a function of frequency

q quantity as a function of time

T time variable of integration, sec

T1/2 time to damp to one-<half amplitude, sec
Tl/?o time to damp to one-twentieth amplitude, sec
t time, sec

tp time required for oscillation to reach

initial peak from time of step-control
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tn time interval over which curve analyzed

x abscissa of response curvas

y ordinate of response curves
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6 control deflection, deg

¢ damping ratio, Damping coefficlent
Critical dampling coefficient
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T time lag, sec
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3% undamped natural frequency, radians/sec
@, forcing frequency, radians/sec
Subscripts:

e elevator

I input

0 output

o magnitude at t = 0

as magnltude at steady state

w magnitude at infinity

€ error

0,1,2,%,4..n numerical integers

The absolute value of any term is denoted by ‘l.



CHAPTER I
BACKGROUND OF STUDY

Long before the appearance of the alrplane, engineers
and mathematiclians were concerned with the stabllity of
dynamic systems in order to insure their satisfactory
operation.l Routh's (188l) analysis of the fly-ball
governor for the Watt steam englne was an early example of
such an analysis. Studles of various dynamic systems were,
in general, carried on separately in the individual fields
of engineering, that 1s, mechanical, electrical, hydraullc,
aeronautical, etc. In the development of the airplane, for
example, up to the advent of World War II the dynamic
systems incorporated therein were for the most part com-
pletely separate units. The control surfaces were directly
connected to the pilot with springs, pulleys, bob welghts,
and elastic cables; electrlcity was limited to lighté,
radlo, and instruments; hydraulics were incorporated with
retractable landing gear; and aerodynamicists were generally
concerned with "stick-fixed" and "stick-free" stability of
the ailrframe. Each component had very little effect on the

other. The blg increase in size and speeds of airplanes

1 Willliam Bollay, Aerodynamic Stability and Automatic

Control. Jour. Aero. Scil., vol. 18, no. 9, Sept. 1951,
pp. 569-617.
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during World Wer II together with the increased rellabllity
of autopilots during the last score of years practically
eliminated the "simplified" airplane., The stability and
operation of the alrplane became dependent upon the
hydraulic and electrical boost systems for the conérols
coupled with sensing devices for artificilal stebllity, and
coupled with autopllots sensitive to a large range of
frequencles from the low frequency phugoid mode of the
airplane's flight path to the very high frequency modes of
structural vibrations of flexible wings and fuselages. The
coupled systems are controlled by the human pilet, radilo
and radar signals, ng (gravity) restrictors, and stabilizing
autopilots, all acting as a unit or separately. The sero-
dynamicist, becoming familiar with servomechanlsms, found
that stabllity 1n each separate component did not Insure
stability of the whole working unit. A means of relating
and adding the inherent characteristlics of the wvarious
systems was a realistic necessity in order for an aircraft
to not only be stable but to be able to respond accurately
to input commands.

A convenlent means of relating individual linear
components, and one generally accepted today, is the appli-
&ation of the frequency response and transfer function

concept. This concept will be expanded in later chapters of

this theslis and 1t should suffice for now to say that the
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transfer function is & mathematical expression incorporating
the inherent dynamic characteristics of a system, regardless
of its nature (electrical, mechanicel, etc.) and relating
the output of the system to its input. Written as a
function of frequency, the transfer function is plotted as
a ratio of output to input amplitude and the phase angle
between output and the input at each frequency of oscil-
lation. This plot expresses the frequency response.
Furthermore, frequency-response characteristics of any one
component of & complex system may be obtained by "bench-
testing" or "flight-testing" techniques and the frequency
date from each component combined to give the frequency
response of the coupled units. This information, in turn,
allows the englneer to calculate the response and degree of
stability of the complete unit to any arbitrary input.

Due to the lmportasnce of the information obtalned, a
great deal of work has recently gone into developing methods
of bench-testing and flight-testing the various systems that
go into present-day aircraft. Considerable interest 1is
centered around reducing the time and work required for
these testing techniques as well as maintalining an acceptable
level of accuracy. A number of methods for doing this have
been suggested and a résumé of methods and progress to date

with reference to dynamic flight testing is presented



by Milliken.2 Although all these methods appear to have
advantages and limitatlions, some methods have gained
popularity with varlous groups wheresas other methods remain
comparatively unused. A number of methods have been
examined and used by the author under the auspice of the
Langley Laboratory of the National Advisory Committee for
Aeronautlcs in an effort to determine which methods to adopt
in establishing the transfer functions of the varlious ailr-
craft undergoing dynamic flight tests. This program has
offered a certain amount of practical experience in the use
and limitastions of the methods, and it 1is believed that this
experience may be of value to others engaged in obtailning
the frequency respcnses of alrcraft. No attempt has been
made to examine all the known methods of analyzing dynamic
responses and omission of any method is not Intended to
Imply lack cf merit.

A brief review of the methods examined 1s offered 1n
this paper, together with references to their derivations
and examples of their application. Three types of alrcraft,
a fighter, a transport, and a free-~fall model, were used for
these examples. The examples are concerned with the short-

pericd longitudinal mode of the airplane, which 1s usually a

2 W. F. Milliken, Jr., Dynamic Stability and Control
Research. Rep. No. Cal-39, Cornell Aero, Lab., Inc.,
(Presented at Third International Joint Conference of the
R.A.8.-I.A.8., Brighton, England, Sept. 3-1l, 1951).



well-damped mode defined by a fairly simple transfer func-
tion. Thus, the comparisons of methods presented herein are
made solely on the basis of results obtained from analysls
of this longitudinal mode. It is recognized that compli-
cated oscillating systems may be analyzed and greater
accuracies obtained by all the methods reported at the
expense of a more extensive analysis. The comparison of
methods presented herein, EHQ;Q%?: may be altered when
applied to more complicated systems.

The methods are discussed with regard to the time
required, the means for facilitatling their use, and the
limitations on their application. Some opinions presented
are not directly substantliasted by quantitative results but
are based on experlence in the use of the methods. The
results obtalned are compared to give some indication of

the relative accuracy of the methods, exclusive of any

inaccuracy in the measurements.



CHAPTER II
BASIC CONCEPTS

It 1s assumed herein that the reader 1is familiar with
the concepts and application of the Laplace transform to
linear systems.3

The frequency response of a dynamic system defines
its steady-state response under the influence of an input
applied in the form of & sinuscidal oscillation of constant
amplitude and period. An analytical expression which defines
the frequency response throughout the frequency range is,
when defined in terms of the Laplace transform variable p,
the transfer function of the system. The transfer function
not only expresses the frequency response but it may be
sald that; for linear systems, any arbitrary input function
operated on by the transfer function determines the
variation in the output function. Conversely, if the input
and output are known, 1t should be possible to determine an
analytical expression which relates the two, that 1s, the
transfer function. The present paper is concerned with
several methods of obtaining the transfer functions of

aircraft from measured inputs and responses. The methods

3 Murray F. Gardner and John L. Barnes, Transients in
Linear Systems Studied by the Laplace Transformation.
Luﬁped-eonstant Systems. Vol. I, John Wiley and Sons, Inc.,
19,42.



presented herein, in general, may be divided into two
classes: methods that flirst determine the frequency
response of the system and methods that determine the trans-
fer function without the determination of the frequency
response.

The NACA slgn convention, as shown in Figure 1,
assumes elevator tralling edge down as positive. Therefore,
a positive elevator deflection will, in general, produce
negative static responses. In order to conform with the
usual practice of plotting frequency-response data, phase
angles have been shifted 180° (that is, zero phase angle at

zero frequency).
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CEAPTER I1I
DESCRIPTION AND DISCUSSION OF METHODS
Sinusocidal-Response Method

0f the several possible ways to obtain the frequency
response of a system, an obvious way 1s to oscillate sinusoi-
dally a control surface at a constant amplitude and frequency
until a steady-state response of the aircraft has been
obtained and measure the ampllitude and phase relationship
between input and output sine waves. The process may then
be repeated throughout the frequency range of interest.
The theoretical application of this method to the determi-
nation of the coefflcients of the transfer function is given
by Greenberg,h and & graphical method of determining trans-
fer functions from frequency-response data is given by
Leese5

The sinusoidal-response method requires the lsast
computation time and the most flight time of the methods

reported herein. In an effort to reduce the large amount of

b Harry Greenberg, A Survey of Methods for Determining
Stebility Parameters of an Alrplane From Dynamic Flight
Measurements. NACA TN 23L0, 1951.

2 Sidney Lees, Graphical Aids for the Graphlical
Representation of Functions of the Imaginary Argument.
M.I.T., Instrumentation Lab.; Engilneering Memo. E-25,
Feb. 1951,
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flight testing required, a number of simplifications from
the usual technique have been attempted. One procedure

that was investigated involved obtalning sinusoidal-response
data by continuously recording the controlled input and the
response of the airplane whille slowly changing the frequency
of the input to cover the range of frequencies desired.
Appendix A presents an estimation of the errors encountered
at several values of rate of change of forcing frequency
when such a frequency-modulated input 1s applied to a
dynamic system defined by a second-order lag. From this
analysis and also from flight results, it appears that, for
systems having near critical damping, satisfactory results
may be obtained. In addition, it sappears that a human pilot
may generate an adequately near sinusoldal input without the
aid of speclial equipment, particularly if he has a fairly
precise Iindication of the amplitude of his stick motion. A
typical record obteined by using these techniques 1s pre-
sented In Figure 2. The deviation from a pure sinusoidal
input is obvious although the filtering supplied by the
airframe results in a nearly sinusoidal response. Jones and

6
Sternfield outline a method for determining the amplitude

6 Robert T. Jones and Leonard Sternfield, A Method
for Predicting the Stability in Roll of Automatically
Controlled Aircraft Based on the Experimental Determination
ofuthe Characteristics of an Automatic Pilot. NACA TN 1901,
19 9.
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of an equivalent sine wave when the actual periodic wave has
an irregular form. In general, however, it has been possible
to obtain results consistent with the accuracy of the
measurements by fairing the peaks of the oscillations in the
input and output and obtalning the double amplitude of these
quantities from the fairing by averaging over a number of
successive half-cycles. The mean value about which the
oscillations occur is established from the falring of the
peak amplitudes, and the time lag of the output behind the
input is determined by averaging the lag read along this
mean value over & number of successive half-cycles. The
period of the oscillations is similarly obtained by
averaging. The method of measurement of these guantities is
1llustrated in Figure 2.

The importance of averaging over successive half-
cycles, when establishing the time lag, 1s shown in Figure 2
where, In some cases, the velocity of the input is con-
siderably different in one directlion than in the other with
the result that the time lag read at one point will differ
considerably from that read one-half period later. The
average, however, appears, in most cases, to represent
adequately the actual time lag.

The frequency-response parameters may be determined
from the averaged values through use of the following

relations:
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Frequency = §E§§EE (1)
Amplitude ratio = Amplitude of output (2)

Amplitude of input

Phase angle = 360 soob— (3)

Flight records for a fighter alrplane were obtalined
with the pilot manually applylng an approximate sine wave of
varylng frequency to the elevator. A sample of the flight
data is presented in Figure 2 and some pertinent geomstric
characteristics of the airplane and the flight condition
under which the data were obtained are listed in Table I.
Data points obtained by the forsegoing analysis are presented
in Figure 3 together with a suggested fairing. The scatter
is considered typical for this technique (pilot-induced
input). These data points represent portions of two flights
of the fighter airplane and a recording ﬁime of about
250 seconds. A typical example of the time required to
reduce the flight data to a frequency-response curve by
thls method 1s shown in Table II. Typical times are also
presented in the table for other methods to be discussed

subsequently.



TABLE I

L

CHARACTERISTICS AND FLIGHT CONDITIONS OF AIRCRAFT

USED FOR

LONGITUDINAL TESTS

= =4 | <&
Condition N N
. Free-fall
Fighter Transport model
Weight, 1b . 12,840 23,000 1,030
Tail length, ft- 16.0 37.0 3.7
Wing area, sq ft . 250 988.9 9.0
Horizontal tail area,
sq Tt 66.2 179.2 1.72
Aspect ratio . L.975 9.13 k.0
Wing span, ft . . . 35.25 95.0 6.0
Mean aerodynamic chord
ft . 7.45 11.5 1.5312
Pressure attltude s ft 10,000 5,000 32,000
Mach number 0.60 0.268 0.725
Morment of inertia in
pitch, slug-rt2 17,311 91,690 50
Sweep, deg . . 0 15.5 45.0
Aircraft density factor 122.0 30.6 2,730

~_NACA —~~
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Fourler Analysis of Transient Response

Another well-known method of determining the frequency
response 1is to determine the coefficients of the Fourier
transform of the input and output functions over a freguency
range Ey analyzing the response (as a function of time) of
the alrcraft to an arbitrary input. The process is indl-

cated by the sxpression

e i
JP qo(t)e “wtdt
) = 0

jpw qI(t)e”j“tdﬁ
0

<0
o (jw (L)

which represents the ratio of the Fourier integral of ths
output to the Fourler integral of the input. The derivation
and several spplications of this method have been extensively
coversd by other paperse7’

This method, as well as the sinusoidal method previ-
ously described, gives data points in eamplitude ratioc and
phase angle at a number of discrste frequencies through

which a fairing can be made. Transfer functions may be

7

Greenberg, loc. cit.
8 ¥elvin E, LaVerne and Aaron S. Boksenﬁom, Frequency
Response of Linear Systems From Transient Data. NACA
Rep. 2977, 1950. (Supersedes NACA TN 1935.)
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obtained from the frequency=-response curves by the same
methods as were mentlioned for the sinusoidal response.

Integration of the Fourier integral offers a choice
of methods which may be divided into two general categories:
(1) methods which divide the transient into finite intervals,
approximate the curves within easch interval with an analyti=-
cal expression, perform the Indicated integration analyti-
cally, and sum the real and imaginary parts of these

e~3¥t 4 trigono-

integrals; and (2) methods which express
metric form, multiply these sine and coslne functions by the
value of q(t) at corresponding times, and Iintegrate the
product curves to determine the real andwimaginary terms of
the Fourier integral.

Solution of the Fourier integral by either approach
involves the judiclous choice of time intervals. For the
analytical representation method, & choice in the form of
the analytical expression must also be made. As the chosen
expression becomes more complex, the accuracy of the deter-
mination of the frequency response generally increases but,
as the work involved lilkewlse increases, a compromise
usually 1s necessary.

The following are several methods which have been
studied and 1llustrate the various approaches to the Fourier

transformation.
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Manual Method: Analytical Integration within dis-

crete intervals of cubic representations of a transient.

A method of representing a transient for solution of the
Fourier integral, as developed by Ordway B. Gates, Jr., of
the Langley Laboratory, involves the divislion of the
transient into discrete time intervals chosen to facilitate
accurate approximation of each portion of the transient by
cubic (or lower-order) polynomials. The Fouriler integral

will then be
Qlw) =‘/;w q(t)e“jwtdt
t1 to
= tle=wtyy 4+ JF tle=d®tat + . . . +
Jg qplt) g, ()

Enel -
JQ T anrtretIutar v L, 4 JC agq(t)ed®tat  (5)
n

where

- 3 2
qn(t) = ant + bnt +cnt o+ dn

The values of the coefficlents a,, b,, c¢,, and 4,
for any given n may be determined from the characteristics
of the transient within the Intervel tp to tps4j. For the
general case, the interval is subdivided into thirds and
values of the transient q(t) at these dividing points

afford four cubic equations having four unknowns
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(8ns bny Cns @nd dy). The advantage of using equal
divisions within the interval t, to t,;; 1is the easse of
the solution of the four equations by means of "successive
subtraction." (See illustrated example in appendix B.) If,
however, the slope of the transient is zero (%% = O) within
the interval, this condition should be used as well as the
value of the transient q(t) at this point. The coeffi-
cients thus determined give an equation that may be used to
check the fit of the transient by the expression before
further work is initiated.

This approach to the evaluation of the Fourler
integral may be expressed analytically as follows:

n=ss

Q) =D Quw) = Ky(@) - JKy(w) (6)
n=0

where

thel -
Qplw) =‘/; <§nt3 F b7 et + dﬁ)e Bt
n

and

tn+l

t.’.l - a | -
ap j;nn tIe~dwtay ‘Sﬁ(é + 63tw - 36%0° '3?3w3)8 e

tn

it

tn+l - b thel
b, JP t%e W tay ~3§(g + 2jtw - tawa)e“Jt“
tn Jw th
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t

n+l  _ e - tn+l
an/‘ te~3“tat = —%(1 + jtw)e Jtw
tn w tn
t t
n+l -jut dn  -jty| - n+l
dn‘/;n e dt = - T e .

The substitution of discrete values of frequency
gives the real and Imaginary terms of the Fourler transform
of the time transient q(t), and the relationships of
amplitude and phase are given as

2 2
K7+ K5

e
H

-
g = tan~! —2
Ky

-’

As an 1llustration of this method, a numerical
example 1s presented in appendix B. A method of this type
is not very adaptable to machine methods because some dis-
cretion is required in the subdivision of the translent; and
the time intervals are not necessarily equal. A small
amount of trial and error may be required in the choice of
these time intervals, particularly in the vicinlty of points
of inflection. The cubic representation has the merit of
being the lowest-order polynomial to contain a point of

Inflection. This approach to the solution of the Fourier
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integral has the advantage of providing an analytical repre-
sentation that may be directly compared with the translent
and of providing an exact analytical integration. On the
basls of comparable accuracy, thls approach is in many
instances shorter than the classical numerical integration

method that follows.

Manual Method: Numericsl integration of product

curves of gqg(t)sin wt and g{t)cos wt. The usual manual

method, which also is the basis of some of the machine
methods, requires a large amount of graphical or numerical
integration because no attempt 1s made to obtain a continuous
analytic expression for the transient until it‘has reached a
steady state. If the input is restricted to a simple
analytical expressidn (for example, a step input will have

a constant value from zero time to infinity), the graphical
or numerical integration of the input 1s eliminated and the
time required for the solutién of equation (h) is roughly
reduced by one-half. For the purpose of graphlcal or
numerical integration, equation (L) may be reduced to an

expression involving real integrals of the form

/; a(t)e s ‘]; q{t)cos wt dt = j ]g“ q(t)sin wt dt

Ki(w) = JKy(w) (8)
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where the frequency-response relationships are given by
equation (7).

The numerlcal and graphical method for the solution
of the Fourler integral and an example of its use 1s glven
by Gréenberg9 and a more complete dlscussion is glven by
Schetzer.lo

A rule of thumb for choosing the proper time interval
in analyzing flight data has been suggested by experience
gained in the use of this technique. The rule is restricted
to the methods of integratlion adaptable to the manual
methods, for example, Simpson's three-point rule. In
general, a chosen time interval At will give reasonable

v

results up to a frequency of so that a time intervsal

of 0,10 second may be expected to produce good results up to
a frequency of about 6 radians per second. The proper
choice of time intervals is obviously dependent on the
character of the input and output; however, the foregolng
rule has been found usually conservative except in cases of
extremely erratic varilations in the input and output. The
highest frequency at which rsasonable results might be

expected will also depend upon the choice of forms of

2 Greenberg, loc. cit,

10 5. p. Schetzer, Notes on Dynamics for Aero~
dynamicists. Rep. No. 8M-1,077, Douglas Aircraft Co., Inc.,
Nov. 19, 1951.
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integration, a superior integrating method affording use of
greater time Intervals for comparable results.

When Simpson's three-point rule for numerical inte~
gration or a planimeter are used for this method, the time
required may be estimated by another rule gained from
experience. For a typical case where the short-periocd
longitudinal response to a step or pulse input 1s analyzed,
the time required to obtain the amplitude and phase angle
of the output (one) function at § frequencles by using
2ly data points has been found to be about 6 man-hours for
an experienced user. Tabulated values of sinwt &and coswt
were used and the time required to make these tabulations was

not included in the estimate,

Punch=-card method (IBM). Certain International

Business Machlines (described subsequently and referred to

ags IRM machines) offer a time-saving solution to the process
outlined in the previous section with usually more accurate
results over a greater frequency range since use of more
complicated and accurate methods of numerical integration

are feasible. Weddle's seven-point rulell

ag derived from
the Newton-Cotes quadrsture formula has been employed and 1s

an example of such a method.

11 William Edmund Milne, Numsrical Calculus.

Princeton Univ. Press, 1949, p. 125.
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By usling essentially the same procedure as the manual
method which integrates the product curves q(t)sin wt and
g{t)cos wt, a set of "master" cards are punched which define
the values of the cosine and sine functions for the values
of wt selected and also define the numerical integration
process used., Since values of w®wt determine the values of
the trigonometric functions punched on the cards, the
frequency range to be evaluated may be varied by changing
the time interval in inverse proportion. Cards are llkewise
punched for the time functions of input and output (and
these must obvlously be punched for each separate analyzed
record).

The calculations involved in the Fourler analysis
method as performed on the IBM machines that are available
at the Langley Laboratory are as follows:

(1) Time response data are perforated onto IBM cards
by using a card punch.

(2) Correct transcription of data onto cards is
checked by a v;;ifier°

(3) Original deck of cards representing time-response
data is reproduced, one deck for each frequency to be
analyzed, by using a reproducer.

(44) Integrating factors and trigonometric functions
are transferred from the "master" deck to each deck obtained

from step (3) by using the reproducer.
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(5) Product functions {(q(t)sin wt and q(t)cos wt)
are obtained by an electronic calculator.

(6) End corrections and integration corrections are
applied by using a sorter and the electronic calculator.

(7) Fourier summation of terms obtained for each
frequency are made by using a tabulator (alphabetical
accounting machine).

(6) Summary cards of amplitude and phase relation-
ships are obtained on the slectronic calculator.

(9) Final frequency data of input and output
functions are typed out by the tabulator.

Some aspects of this process as applied to lateral responses
having steady-state osclllatory responses are described in
more dstall in a report by Convair.lz

The time required for this IBM equipment to perform
the operastions indicated has been found to be 5 machine-hours
for the determination of data at 12 frequencies for one
function by using one set of machines and 2l;1 dats points
(12-second records using 0.05-second intervals). This time
was averaged over several performances and Included all

checks and correction of mistskes.

12~G° P. Breaux and E. L. Zeiller, Dynamic Response
Program on the B-36 Airplane: Part III - Presentation and
Theoretical Considerations of the Transient Analysis Method
Employed for Obtaining Frequency Response Functions From
Flight Data. Rep. No. FZA-36-195, Consolidated Vultee
Aircraft Corp., Feb. 1, 1952,
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Method using the electromechanical Fourler

synthesizer. The electromechanical Fourler syntheslzer,

originally bullt and used by the Massachusetts Institute of
Technology to produce translent-response curves from
frequency-response data, was designed to perform the

following operation:l3

:E:: qne~J(nﬂ+¢h) = :Z:: ay cos(np + ¢n) -

> a sin(np+ ) (9)

n=1,2,3,...

where

Ap amplitude of nth harmonic

2, phase angle of nth harmonic

g angular displacement of fundamental

The application of the Fourler synthesizer to the evaluatlon
of the Fourler integrsal may be seen from the following
derivation,

The general form of analysls assumes that any arbi-
trary curve of input or output may be represented by a serles
of step functlions with a constant finite time lag between

the steps:

13 R. ¢. sSeamans, Jr., B. P. Blasingame, and G. C.
Clementson, The Pulse Method for the Determination of Air-
craft Dynamic Performance. Jour. Aero. Scil., vol. 17, no. 1,
Jen. 1950, pp. 22-38.
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ql(t)

taay

t
to ty £ t3 &, tg 6
Time, t
The step approximatlion 1s the same as that used in the
analytical method of obtalning the frequency response from a

1

time response to a step Ilnput and also the same as the
extension of this analytical method to an arbitrary 1nput.15
Thus, the Fourler Iintegral of an arbltrary function in

time q(t) may be approximatedlin the form

1 Robert C. Seamans, Jr., Benjamin G. Bromberg, and
L. E. Payne, Application of the Performance Operator to
Aircraft Automatic Control. Jour. Aero. Sci., vol., 15, no. 9,

Sept. 19438, pp. 535-555.

15 yoward 7. Curfman, Jr., and Robert A. Gardiner,
Method for Determining the Frequency-Response Characteristics
of an Element or System From the System Transient Output
Response to a Known Input Function. NACA Rep. 934, 1950.
(Supersedes NACA T 196L.)
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- {ast -3t
WUe) = Jf' Aqy(t)e Jutat +L/‘” Ag,(tle Jobar + .. L4
At At
£ty -5 t

1 2 "2
° aq (t)e™I¢%at (10)

At
th -5

Therefore,
At
- nwat-w

ae) =& pag(t)e (ruoee%5) (11)

In trigonometric form

QUw) = - % E Aqn(t)sin<pw At - @ %}) -
n=1,2,3,..0

At
-% E Aqn(t)cos<éw At - w > {11a)
n=1,2,3’-|o

This relationship, as can be seen by comparlison of
equation (1la) with equation (9), may be handled by the
Fourier syntheslizer.

The number of points that may be used convenlently to
represent the time-response curve 1s determined by the

munber of resolvers available in the machine to simulate the
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convolution process. The machline Investigated, employing
2l resolvers, required I} to 8 hours to obtain the frequency
response of & system from any arbitrary input and output
that may be represented by 2l equally spaced steps. The
frequency data are presented by the machine as curves of the
Fouriler transforms of the real and imaginary coefficients.
From these curves, values at any number of frequencles may
be chosen for the determination of phase angle and amplitude.

In view of the fact that the Fourler synthesizer
utilizes 2l equally spaced steps, it is limited to tran=-
slents that may be adequately approximated thereby. Although
the frequency range plotted by the synthesizer is from O to
w/at radians per second, the results do not appear to be

accurate to any higher frequency range than is quoted for

the manual method which uses Simpson's rule <% = 5 Zt)'

Coradi harmonlic analyzer. The Coradi harmonic

analyzer16 is a semimanually operated tracing machine which
by the use of several rolling spheres may be used to evalu-
ate the Fourier Integral of a function. The model investi-
gated (Dent-Draper Model, Rolling Sphere type, Mico

Instrument Company, Cambridge, Mass.) employed five spheres

which, through use of various gears, may measure the

16 Joseph Lipka, Graphical and Mechanical Computation.
John Wiley and Sons, Inc., 1918,
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harmonic content of a curve within a range of 1 to 50 har-
monlcs. Details of the operation of an earlier model of
the Coradl harmonic analyzer have been reported.l7

Through the use of the Coradil harmonic analyzer, the
time transient 1ls traced from the point of initiation
(initlal conditions zero) to the polnt of steady-state

response and the following integrals are evaluated:

¥ -c‘];zss cos wt a[y(t)] (12a)

i

y
¥, = ¢ ]; % sin wt afy(t)] (12b)
(o]

These integrals are proportional to the real and imaginary

part of the Fourler integral of the curve being analyzed
© -jwt
Qluw) = 0 a(t)e dt

The proportionality may be seen by integrating the Fourler

integral by parts to change varlables so that

Sy o AlE) -jut 1 [a=) _jut
Uw) e e w o+3"’ fo e a@(tﬂ (13)

17 Dayton C. ¥iller, The Henricl Farmonic Analyzer
and Devices for Extending and Facllitating Its Use. Jour.
Franklin Inst., vol. 182, no. 3%, Sept. 1916, pp. 265-322.
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where for all practical purposes the first term is zero.
In the use of the Coradl harmonic analyzer, the term q(t)
1s plotted along the y-axis; therefore, equation (13) may

be written as follows:

]

Qlw) 3%;;];% e"j“’tdl:y(tj

i

D URY LIRS USVRNE S A Y
jwfo R . d[y(tﬂ (1)

where the second term is zero since = Ve In trigo-

Jss
nometric form, equation (1) becomes

, 17
Qlw) = -;\/; 8% sin wt d[?(t) +

Ei-J;yss cos wt d[?(tﬂ (15)

80 that substitution of equations (12) into equation (15)
gives
"‘72 Vl
Q(w) = wC + j ;E (16)

21
where ® = 3;3 and tr is defined as the time interval

over which the curve was analyzed. The constant 1/ 1is
the scale factor between the function being analyzed and

the displacement of the dials of the analyzer. In general,
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because only the ratio of output to input is desired, the
individual scale factors need not be computed provided both
quantities are plotted to the same scale.

This analyzer appears to produce the Fourier coeffi-
clents within an accuracy dependent upon the kinematic
aicuracy of the machine (which is primarily affected by
slipping of the rollers but also to some extent by wear)
and the ability of the operator and machine to follow
exactly the trace belng analyzed. The operator is required
to follow the curve in the direction of the ordinate q(t)
while the machine, operated by a microswitch, automatically
traverses along the abscissa t. Accurate tracing becomes
difficult when steep slopes (large values of dgq/dt) are
experlienced, and a certain amount of roller slipping and
human error should be expectsd. This inaccuracy is allevi-
ated somewhat by averaging the values obtained from three
or more repeated tracings. Experience with the machine has
indicated that the accuracies obtained are about the same as
those obtained by the manual methods.

The time required to obtain the Fouriler coefficients
of one function gq(t) for 15 harmonics has been found to be
about l} hours for an experienced operator. This estimate
includes the time to aline correctly the sxes of the curve

with the machine, to connect the correct set of gears for



3L

each 5 harmonics, and to trace the curve three times for
each set of 5 harmonics.

A consideration in the use of this machine is its
ability to produce the Fourler coefficients in a compara-
tively short time, particularly with erratic functions that
would require very small time intervals to represent accu-
rately the function for use by other methods. A point worth
noting is that, for erratic functions, the average of
several tracings should produce & more rellable result. In
the use of the Coradi harmonlic analyzer, the limlitation that

the function must reach steady state still applies.
Curve-Fitting Methods

In the methods herein called curve-fitting methods,
the form of the transfer function is directly or indirectly
assumed and the coefficients of the transfer function are
determined by least-squares methods or a combination of
least-squares and direct-computation methods. With a
number of these methods, the analytical expression called
the transfer function is obtsained without flrst obtaining
frequency-response data.

The Donegan-Pearson meéthod requirses a direct asgsump-
tion as to the form of the transfer function and solves for
the coefficients by substituting into the transfer function

the input and the output tlime functions and their integrals.
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On the other hand, the exponentlial-approximation method
solves for the coefficlents of analytical expressions whlch
approximate the time histories of the Input and output
functions. The transfer function 1is then established by
taking the Laplace transform of these analytical functions.
In either the Donegan-Pearson or the exponential-
approximation methods, the order of the expressions used fo
approximate either the transfer function or the input-
output time histories is unlimited. Therefore, the require-
ment that the form of the transfer function be assumed would
appear not to be particularly restrictive other than that
the system be linear. In practice, however, the computation
involved in the least-squares procedure Iincreases rapidly
with increase in the order of the eguations and the equations
tend to become progressively more ill-conditioned. The
general practice therefore has been to assume a form for a
given transfer function, as would be predicted from the
stability theory, and thls practice, in general, neglects
low-frequency (phugoid) modes and possible high-frequency
modes due to structural elasticity in order to hold the
order of the equations to a minimum. Such procedures do not
afford detection of these modes from flight-test data in
cases where these modes are important unless a form of the
transfer function is assumed in advance which Include such

modes. In contrast, Fourlier analysis will detect all
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details of the frequency response which are within the
accuracy of the measurements and the calculastion procedure.
The forms of the longitudinal transfer functions usually

assumed in conjunction with the curve-fitting methods are:

-
a Ep + F

6 Apz + Bp + C

Do _ Gp + H

Ap© + Bp + C

n_LpS +Mp + N

8 ap? +Bp +C

where the substitution of Jjw for the Laplace transform

operator p gives the frequency response of the system,

Exponentiael-approximation methods. Since the

response of a linear system to a step or impulse is a sum

of exponentials, an obvious method for fitting airplane time
responses ls the choice of exponential terms. The number of
exponentials 1s selected so that the Laplace transformation
will glve the same polynomial expressions as obtained from
stebility theory. Although thlis method can be applied to
any input that has & Laplace transform, it is most sulted
for application to responses to an approximate impulse, a

step, and an approximate step input. The practical
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"approximate step," as compared to the theoretical perfect
step, may have é small but finite lag in reaching steady
state and may have a small undershoot or overshoot,18 The
response equation to a step may be represented for the case
of the short-period longitudinal mode of motion of an air-

plane by the form
alt) = qq + eat(Jl sin wt + Jp cos wt) (18)

where a 1s the damping exponential, w 18 the frequency,
J1 and Jp are the coefficlents of the in-phase and
out-of -phase components of the response, and gq(t) 1is a
function of time that expresses the response of the system.,
In the Laplace transformation of the general form
glven by equation (18), the denominator of the transfer

function would be given by
[p - e r 30)][p - (o - gul] = 5% v + (19)

For lightly damped systems where the period and time to damp
to one-half amplitude may be read directly from the response

records, it has been found that direct calculation affords

18 Marvin Shinbrot, A Least Squares Curve Fitting
ethod With Applications to the Calculation of Stability
Coefficients From Transient-Response Data. NACA TN 2341,

1551,
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an accurate and rapid means of obtaining b and k. In the

use of this method it follows from equations (18) and (19)

that
b = 1.386 -2a {20)
Ty /2
L = o.LLB2 . 39»%8 = 82 4+ 2 (21)
(T1/2) P

where T1/2 is the time required for the oscillation to
damp to one-half amplitude and P 1s the measured perlod
of the oscillation.

Thlis process, where the coefficlents of the transfer
function are computed from direct measurements of the flight
records, has been used extensively for the case of rocket
and free-~fall test models since these test models, in
general, exhibit the low damping and high natural frequency
which enable this approach.

Once a and w are determined, values of J;
and J, appearing in equation (18) may be obtained from
the time history. 1In instances where the steady state 1is
adequately defined, direct computation of Jp 1s afforded.
In the analysis of the response of an airplane in angle of
attack and pitching velocity over short periods of time,

the coefficlent J, must be negatively equal to the value
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of the response at steady state. For the response 1ln normal
acceleration, however, a step input of the control surface
causes an effective instantaneous change in load on the tall
which, in turn, produces an instantaneous jump 1in the
normal-acceleration response of the alrcraft. An illus~
tration of this type of response is shown in Figure i« The
relationship among the instantaneous change in acceleration
at t = 0, the steady-state acceleration, and Jp 1is shown

by equation (18) for t = 0 so that
q(0) = q, + J, (22)

With the coefficient J2 thus established, a possi-
bility for direct calculation of J; may be indicated for
the case of a step input and lightly damped systems by

writing equation (18) in the form

alt) = q, + 2P \[7,2 + 1,2 sinfut + #) (23)
and
J t
= -1 _.,.% = l - B
g = tan 75 (2 P)Zw (2h)

where P 1s the period of the oscillation and tp 1s the
time required for the oscillation to reach a peak after
initiation of the step input. The relationship among {,

P, and t, may be visualized by reference to Figure L.
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The method of obtaining the transfer function for a
system represented by equation (18) in response to a step
Input of the forcing function 1s shown in appendix C. The

transfer function 1s of the form

q +J bg, + Jyw - J,a kq
( QB 2)132 + ( ® 6; 2 >D + 60&
% (py= 12 5 (25)
p< + bp + k

where &, b, kX, and w are related by equations {(20)
and (21), and 8, 1s the magnitude of the step.

As a general rule, the exponential-approximation
method of simulating transient data seems to offer the best
approach of any of the methods reported 1n this paper when
the response is a lightly damped osclillation to an approxi-
mate step. It is of interest to note that this method may
be used even though the Input 1s not approximated by expo-
nential expressions, provided 1ts analysis is restricted to
the free-oscillation portions of the response, The coeffi-
clents k, b, Jy, and J, of equations (18) and (19) may
be obtained regardless of the form of input provided that
they are obtalned from a portion of the time-response curve
after the input has reached s steady-state value. This
adaptation 1s pointed out by Shinbrotl9 and the method of

application is reported therein.

19 shinbrot, loc. cit.
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The foregoing method 1s useful only when the perlod
and time to damp to one-half amplitude may be read directly
from the records. For highly damped systems where this is
not possible and as an alternate to the foregoing approach,
a least-squares method for obtaining the period, damping,
and other coefficients of equation (18) may be employed.
Greenbergzo discusses extensively the application of the
Prony method for fitting a sum of exponentlals to a number
of equally spaced ordinates, This method will likewise
obtain the transfer functlon given by equation (25).

A measure of how closely the analytical expression
represents the time response of the system durilng free
osclllation may be obtained by substituting the derived
coefficlents into equation (18) and allowing the time t to
vary. Thils substitution amounts to tsasking the inverse
Laplace transform of the transfer function, once it has been
determined, and returning the function Q(w) to the time
domain where it should be equal to the original function of
time q(t).

The time required for this method varies with the
number of least-squares solutlions required to obtein the
four unknowns b, k, Jy1, and Jp. The extreme case 1s

the case where a least-squares solution is desired for all

20 Greenberg, loc. cit.

it
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the coefficlients of & response. In this instance 1f the
input 1s conslidered to be a step and tpe response 1is
described by 2l data points, the time required to obtain
the transfer function of the system may be estimated at

8 to 10 man-hours of work and three separate least-squares
solutions are required. Any reduction in the number of
least-squares solutions will obviously reduce the time

required appreciably.

Donegan-Pearson method. This method21 is appro-

priate for obtalning the transfer function from transient
response to an arbiltrary input, and, when only manual
comput ing techniques are available, offers a good degree
of accuracy with a minimum of work., 1In brief, a transfer
functlon of one of the forms given by equation (17), for

example,

(ApS + Bp + C)q = 8(Ep + P) (26)

is integrated twlice and rearranged to give

Bft cfth Eft
= q at + = q 4T at - = & dt -
A Yg Adg Jp AJg

NN :
- 5 AT dt = = (26a
EJy Jo q )

2l rames 7. Donegan and Henry A. Pearson, Matrix
Kethod of Determining the Longitudinal-Stablility Coefficients
and Frequency Response of an Aircraft From Transient Flight
Data. NACA Rep. 1070, 1952. (Supersedes NACA TN 2370.)
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The equation is now in a form where the integrals may be
calculated from q and & which are known from a timse
history. The integral quantities in the foregolng equatlon
are evaluated at some fixed time intervals, starting with
the initial control input, to form a serles of simultaneous
%, %, %, and % coefficients
may be evaluated by the least-squares method.

equations from which the

The expression of the transfer function in integral
form is an important point with regard to application of this
technique in that the integration processes are lnherently
more accurate than the differentiation process indicated in
the normal form of the transfer functlions. The integrals
and the coefficlents may be obtalned by matrix methods.zz’ 23
The use of higher-order terms 1n the numergtor and denomi -
nator of the transfer function is possible but, in many
cases, 1s unnecessary because of the insignificance of their
coefficlents and 1s impractical because of the large amount
of additional work required.

In the derivation of tﬁis method no restriction is
made or implied that the forcing function (input) or

transient response reach a steady state within the time

22 Donegan and Pearson, loc. cit.

23 Pranklin W. Diederich, Calculation of the Aero-
dynamic Loadlng of Swept and Unswept Flexlble Wings of
Arbitrary Stiffness. NACA Rep. 1000, 1950. (Supersedes
NACA TN 1876.)
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1limit considered. There appears to be, however, a practical
limitation on the length of the record since, for any given
short length of a curve, a large number of analytical
expressions may be wrltten that satisfy, with good precision,
the conditions of the curve in the reglon conaidered.
Obviously, as the length of the record considered is
extended, the expressions that adeduately define the curve
become more limited until the correct expression 1is closely
approached. In the analysis of arbitrary inputs and
responses that reached a steady state, this method produced
excellent results over a large range of frequencles 1in a
reasonably short length of time. When proficlency was
obtained in the use of this method, including the matrix
methods of integration and least squares, a complete fre-
quency response required about 8 man-hours of work from raw
data (averaging about 20 data polnts) to finlshed frequency-
response curves (averaging 16 frequencies).

In the application of thls method, a somewhat simpler
integrating matrix was used that reduced the time of Inte-
gration by about one-half over the method presented by
Donegan and Pearson.ZLL The derivation of this integrating
matrlx by use of the relatlionships reported by Diederich25

is presented in appendlx D.

2l

Donegan and Pearson, loc. cit.

25 pilederich, loc. cit.
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A check on the accuracy with which the time response
is represented is afforded by the inverse Laplace transfor-
mation process.26 A second method, which has been

27 utilizes the evaluated integrals of the output,

suggested,
the recorded input, and the transfer function. If the
transfer function is to represent the system accurately,
the response obtained by this check must be equal to the
original time response.

For both the Donegan-Pearson and exponential-
approximation methods, a second approximation to the deter-
mined transfer-function coefficients may be made by a pro-
cedure suggested by Shinbrot.28 In cases where this
refining procedure was attempted, the process was lengthy

and frequently did not afford better approximations because

of fallure of the method to converge.

26 Gardner and Barnes, loc¢., cit.
27 Donegan and Pearson, loc. cit.

28 Shinbrot, loc. c¢cit.



CHAPTER IV
RESULTS AND COMPARISONS OF METHODS

The frequency responses as obtained from three air-
craft of different types are used herein for illustrative
purposes. A summary of the mass and geometric parameters
of these aircraft together with a sketch of thelr plan forms
is presented in table i, as are the flight conditions for
which the data were obtained. These alrcraft will be
referred to as a fighter, a transport, and a free-fall
model,

All methods of analysis were not applied to all three
of these aircraft, but a comparlison of the methods 1s made
herelin for the fighter at one flight condition. The com-
parison is made with the response 1n pltching velocity to
an elevator step input. Time histories of the control input
and the response are shown in Figure 5. The Donegan-Pearson,
Prony, Fourier syntheslzer, IBM, and manual Fourier methods
were used to obtaln the frequency response of the fighter
from these time historiles. A time iInterval of 0.10 second
was used for the manual methods, 0.05 second was used for
the IBM method, and 0.06 second was used for the Fouriler
synthesizer. The frequency-response curves thus obtained
are shown in Figure 6, together with the faired curve of
Figure 3 which was obtained at the same fllght conditions

L7



Elevator input, 8¢, deg
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Figure 5.- Time history of elevator step input and pitching-velocity
response of fighter at M = 0.6 and hp = 10,000 feet. Circled
points indicate the response calculated from transfer coefficients
obtained from Donegan-Pearson method.
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by the sinusoldal-resgsponse method. The frequency response
of the fighter appears to be established to a generally
acceptable degree by any one of the several methods shown.

The expression "acceptable degree" 1is expanded subsequently.
Effect of Input Shape

Inasmuch as the compatibility of results obtalned by
using the various methods on a step input has been estab-
lished, it 1s of interest to check the effect of this and
other input shapes.

A check of the effect of input shape on results
obtalned through use of the Donegan-Psarson method has been
made, The step Iinput 1llustrated in Flgure 5 together with
the approximately square and triangulsr inputs shown in
Figures 7 and 8, respectively, were used for the investi-
gatlion and these inputs and their responses were analyzed
at time intervals of 0.10 second. On each of these three
figures, the accuracy with which the responses were repre-
sented by the transfer functlons determined by the Donegan-
Pearson method 1s shown by the data points on the response
curve., These polnts represent values of piltching velocity
obtalned by multiplying the Integrated functions of

equation (26a) by the derived transfer coefficients at the
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Figure 8.- Time history of elevator triangular-pulse input and pitching-
veloecity response of fighter at M = 0.6 and hp = 10,000 feet.
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values of time 1indicated in Figure 5. This procedure has
been described in more detail.29

The frequency response of the fighter as determlned
by these transfer functions is shown in Figure 9 compared
with the falred curves of amplitude ratlo and phase angle
obtained from the sinusoidal-response method. The
sinusoidal-response method is lncluded because 1t involves
a different test technique. These four sets of frequency-
response curves appear to be in good agreement. Whether
their agreement 1s to an "acceptable degree" may be 1illus-
trated by examining how closely they agree in the tlme
domain when an ldentical control input 1s applied in each
case, This process may be done manually through use of the
inverse lLaplace transformation; however, the Fourier syn-
thesizer offers a machine method of obtalning the time
response of a system described by the frequency-response
curves to an approximate ramp or step. The Fouriler syn-
thesizer was used in the present analysis and the inverse
of the process described in the section entitled "Description
and Discussion of Methods" was applied.

The control Iinput and time responses uslng the three
frequency-response curves corresponding to the three input

shapes investigated are shown in Figure 10. The curves show

9
29 Donegan and Pearson, loc. cit.

Sinon
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a maximum spread about 13 percent of steady-state value at
steady state and a smaller percentage spread at peak over-
shoot. Thus, it appears that the determination of the
transfer function is not particularly sensitive to the
shape of the control input when the Donegan-~Pearson method

is used.
Effect of Harmonic Content of Input

In the application of Fourier methods, the harmonie
content of the input must be considered and has a predomi-
nant effect on the results obtalned., Harmonle content per-
talns to the relative magnlitudes of the sine waves of
various frequencies which make up the input or response
shape and 1s essentlally the amplitude of the Fourier
transform of a functlon.

In order to illustrate the harmonic content of
several inputs, Figure 11 shows the Fourler transforms of
square, triangulsr, step, and impulse type of inputs plotted
against frequency. It can be seen that the harmonic content
of the square and trlangular inputs go to zero at equally
spaced increments of frequency, the spacling belng dependent
on the duration and shape of the input. For elther shapse,
doubling the duration of the input will halve the spacing
between the frequencies of zero harmonic content. An error

frequently encountered in the frequency domain when Fourler
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methods are used 1s caused by the harmonic content of the
Fourier transform of the input closely approaching or
reaching zero, When this condition occurs, s8light errors
in the data cause the frequency-response curves to diverge
and even to go to infinity at some frequency if the harmonic
content of the input functions becomes zero at that
frequency.

An example of the distortion of the frequency-
response curves due to low harmonic content was obtained
in the analysis by Fourier methods of the rectangular-pulse
input and pitching-veloclty response of the fighter as shown
In Pigure 1l2. Because of the length of the rectangularé
pulse input used, the harmonic content of both the input and
response closely approached zero at frequencles of about
8.5 radians per second. The discontinuity due to the lack
of harmonic content 1s shown in the frequency-response plot
of Figure 13. An additional test utilizing an input which
affords data having good harmonic content in the region of
uncertainty would be desirable in order to insure that no
legitimate secondary peak or other significant character-
istic exist in that range of frequenciles.

When choosing inputs to be used in obtaining flight
data for Fourler analysis, 1t 1s desirable to examine their

harmonic amplitudes in light of expected instrument accuracies
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in order to select an input or series of inputs which will
afford sufficiently accurate frequency-response data 1in the
frequency range of interest.

Since it 1s desirable to maintain large values of
harmonic content over the entire frequency range, inputs
approaching an impulse would appear most usable. 1In
practice, however, control inputs of this type having
suitable amplitudes must be malntained over a significant
length of time so that the airplane 1s disturbed suffi-
clently to insure accurate measurement of the response.
Thus, the transform of the resulting pulse will often
closely approach or reach zero at some frequency in the
range over which the response 1s desired.

The transform of the step input has the desirable
feature of never becoming zero. Having infinite amplitude
at zero frequency, the transform decreases as the 1inverse
function of frequency and approaches zero amplitude as the
frequency approaches infinity. 1In view of the rapid decreass
in harmonic content with increase in frequency, however, it
1s sometimes difflicult to maintaln the accuracy of the
frequency response to as high a value of frequency as
desired. This effect may be seen In Figure 11 by comparing
the harmonic content of the triangular and step pulses from

1 to 8 radians per second.
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The transforms of several basic 1nputs together with
the effect on harmonic content of distortion of these basic

30

inputs are 1llustrated in a report by Convair.
Effect of Record Length

The advantage indicated for the so-called curve-
‘fitting methods with regard to their ability to make a
logical interpolation over frequency regions of low harmonic
content would also appear to be applicable to extrsgpolation
in elther the frequency or the time domain. For example,
the fact that the analytical form of the transfer function
is assumed in advance for these curve-fitting methods would
appear to afford possibilities for analyzing only a part of
an input and response to establish the coefficients of the
transfer function whereas the Fourier anslysls, by the
nature of the limits of the Fourier integral, requires that
a steady-state or a constant-amplitude oscillation be
obtalined. This apparent advantage of the curve-fitting
methods in that the transient is not required to reach
steady state has, in general, proven to have definite
practical limitations. 1In the application of both Fourier
and curve-fitting methods, it has been found that time
transients that do not closely attain steady state do not

produce accurate frequency-response data.

30 Breaux and Zeiller, loc. cit.

———
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Figure 12, which shows the time history of a
rectangular-pulse elevator input and the response In
pltching velocity of the fighter, may be used to 1llustrate
these practical limitations. The data were analyzed in
three stages. The response was first considered in the
time interval from O < t = 0.70 second to be the response
of the fighter to an approximate step where the pltching
velocity appeared to reach & steady state before the elevator
was agaln dlsturved. Time increments of 0.05 second were
used to obtaln the frequency response of this portion of
the time historles by the Prony, Donegan-Pearson, and manual
Fourier methods. (in this analysis, the Prony method
required 16 man-hours; the Donegan-Pearson method reguired
9 man-hours.) In addition, check points were obtained by
the manual Fourler method (by using Simpson's three-point
rule of integratlon) with time intervals of 0.10, 0.025,
and 0.0125 second. The frequency-response results of this
analysis are shown in Pigure 1l and, although all the
methods closely agree, the frequency response appears to be
quite different from that indicated in Figure 6 which was
obtalned for the same alrplane at the same flight conditions.

The source of this discrepancy was determined when
the time historles shown in Figure 12 were again analyzed
by using the Donegan-Pearson method at 0.05-second intervals

to a time of 1.40 seconds where the response still had not
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approached a steady state too closely but the length of the
record used had been doubled and the effective amplitude had
been more than doubled. A third analysis was made by using
the Donegan-Pearson method at 0.10-second intervals to

2,10 seconds at which time 1ts steady-state value was
closely attained. The frequency response obtained by using
each of the three record lengths is shown in Figure 15
together with the frequency response obtained for the
fighter (by the Donegen-Pearson method) from Figure 6. It
may be seen that, when the first one~third of its response
was énalyzed, the record was short, and a steady state had,
not been reached; these factors precluded an adequately
precise definition of the time response and an erroneous
frequency response was obtained. -When the length of the
record was doubled, a more correct trend became apparent
but, because a steady state had still not been defined,

some fairly large discrepancies persisted, particularly with
regard to the static velue of the frequency response (the
frequency-response curves of Figure 6 being used a basis for
comparison). When the analysis included the entire response,
even though the time interval used in the analysis was

doubled, a close agreement with the frequency response
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obtained from the step input was obtained. Donegan and

Pearson31

recommend that enough of the response time his-
tory should be taken to cover the natural perlod of the

system.
Other Causes and Effects of Errors

In the determination of transfer functions from
inputs and outputs having regions of low harmonic content,
an advantage has been indicated to the spproach of fltting
an analytical expression to experimental data. In the
author's opinion, thls curve-fitting technique, as compared
to the Fourler analysis, 1s of particular merit if there is
reasonable confidence that the assumed analytical expression
1s of the correct form for the system belng analyzed. In
this manner, another condition (the form of the transfer
function) is stipulated which the analysis must obey. In
mathematical processes, the more conditions correctly stipu~
lated, the more precise the results. On the other hard,
errors in the transfer function or frequency response as
obtalned from the curve-fltting methods due to either the
wrong assumption of the form of the transfer function or due
to the errors in the calculations are not readily apparent

since the assumption of a given form will usually gilve

51 Donegan and Pesarson, loc. cit.

———
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variations that appear logical. However, as has been
pointed out, certain checks, such as the use of the inverse
Laplace transformation, are available for comparing the time
response predicted from the transfer functions wilth the

time -response curves from which the transfer functions were
derived.

In the Fourler methods, inaccuracies are, in general,
more readily discernible than In curve-fitting methods. 1In
the use of Fourler methods, there has been found52 evidence
of discrepancies attributable to three causes: the lack of
harmonic content of the Fouriler integral, the use of too
large time intervals in the time domain to afford accuracy
in the frequency domain, and the incorrect synchronization
of input and response data in the time domain.

The first of these errors'has already been discussed
in the consideration of the effect of input on Fourler
methods and, as has been pointed out, 1s usually discernible
by divergence of the curves 1In some small range of
frequencies,

The second of thess errors, that of too large time
intervals, is generally indicated by a scattering of the
data points in the frequency domain where the magnitude of

scatter usually diverges rapidly with incressing frequency.

52 mreaux and Zeilller, loc. cit.

——v——
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Insight into the cause of this scatter may be seen in the
characteristics of the Fourler transform where, at each fre=-
quency, the transient q(t) 1is multiplied by a sine and
cosine wave of unit amplitude and where the resulting area
under the two product curves determine the coefficients of
the real and imaginary parts of the complex varlable in the
frequency domain. As frequencles greater than the natural
frequency are investigated, the differences in the positive
and negative areas of the product curves grow smaller
{compared wilth the magnitude of the individual areas) so
that the effect of small errors is magnified. Thus, small
inaccuracies in the representation of the transient curve
become more prominent as higher frequencles are investigated
and appear in the frequency domain as scatter., Several
estimates of the frequency at which scatter will become
important, for the different Fourier methods, bssed on the
time interval chosen, have been gilven in the sectlon
entitled "Description and Discussion of Methods."

A typlcal occurrence of scatter due to the choice of
too large a time interval was obtalned when the response of
a free-fall medel, the characteristics of which sre given
in table I, was analyzed at 0,10-second intervals by the
manual Fourler (numerical-integration) method. The elevator
input used and the response of the model in angle of attack

are shown in Pigure 16. The frequency response as determined
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by the numerical manual Fourler, the Coradil harmonic
analyzer, and the exponentlal-approximstion methods of
analysis are shown in Filgure 17. The scatter of polints
obtained by the manual Fourier method of numerical inte-
gratlion occurs at frequencies greater than about & radians
per second, Further analysis with smaller time intervals
of, say, 0.05 second should provide better results in this
region.

In the study of misslles and free-fall models where
low damplng 1s generally encountered, the use of the
exponential-approximation method 1s particularly useful and
requires a minimum of time. The response in Figure 16 was
analyzed by both the least-squares (Prony) method with 0.10-
second intervals and by direct computation. Both gave
ldentical coefficients and the frequency response obtalned
by using these coefficients is also shown in Figure 17.

The Donegan-Pearson method was attempted with this type of
response but did not produce coefficients that represented
this lightly deamped system as exactly as it d4id for systems
with high damping. The representation of the time response
by the derived transfer function is illustrated in Figure 16
where the inverse Laplace transform was applied to the
transfer function obtained by the Donegan-Pearson and
exponential-approximation methods to predict the response

to a step. The reason for this condition is that the
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transfer coefficlients which primarily determine the period
and damping of the oscillation are determined by the double
integration and integration, respectively, of the output.
The smoothing effect of these integration processes on any
existing oscillation does not therefore enable accurate
detection of the oscillation characteristics.

Although scatter obtained by using the Fourler
approach is indicative of lnaccuracies, the converse does
not apply inasmuch as the absence of scatter in the use of
Fourier methods is not an indication of correctness. An
11lustration of this point was obtalned in the analysis of
the frequency response of the transport, tested under the
conditions given in table I. The response in pltching
velocity to an elevator input 1is shown in Figure 18. The
manual (numerical-integration) Fourier method, analyzed at
0.20-second intervals, was used to determine initlally the
response at 1, 3, li, 5, and 8 radians per second and these
frequency-response points are indicated in Figure 19.
Although the amplitude ratios and phase angles at the fre-
quencies investigated dld not indicate scatter, when two
additional frequencles (6.5 and 7.5 radians per second) were
investigated, the scatter became apparent. At a smaller
time interval of 0.10 second, the control input and time
response were analyzed by using the Fourler synthesizer,

Donegan-Pearson, and again the manual (numerical-integration)
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h,p = 5,000 feet as determined by several methods.
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Fourier methods. Although small differences in the results
are apparent in Figure 19, they do agree sufficiently well
for most purposes. A check point at a frequency of 8 radians
per second and with a 0.05-second time interval was made
with the numerical-integration Fouriler method. The result
essentlally substantiated the value determined with 0.10-
gecond time intervals.

The third mentioned cause of error often incurred in
the Fourler analysis was referred to as incorrect synchro-
nization of the input and response data in the time domailn.
A shift in the correlation of the time scales between Input
and output, iIn turn, causes a change in the phase angles
obtained in the frequency domain by an amount directly pro-
portional to the frequency. These erroneous values of lag
or lead will be hard to detect regardless of whether Fourler
or curve-fitting methods are used since incorrect but appar-
ently logical frequency-response curves will usually occur.

In order to avoid or reduce errors in the determina-
tion of transfer functions from flight data, it 1s highly
desirable to use as large a control deflection as possible,
but the magnitude of this control deflection must also be
compatible with the requirement that the stability param-
eters of the alrplane remain within their linear range. It
also appears highly desirable to analyze responses from two

or more Iinput shapes at a given flight condition. A
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comparison of the frequency response obtained from the same
record by different methods has also proved a useful check,

As mentioned previously, examples indicating the
times required to reduce flight data to frequency responses
by the varlious methods discussed herein are summarized in
table TII. The table enables the welghing of the time
factor 1n choice of a method; however, the cholce depends
on other factors as well, such as avallability of machine
computing equipment and limitations inherent in the wvarious

methods as have been discussed.



CHAPTER V
CCNCLUDING REMARKS

In the foregoing study & number of consideratlons are
indicated which pertain to the choice of methods in the
determination of transfer functions and frequency response
from transient data. These considerations may be summarized
as follows:

In the methods which involve the analysis of transient
responses over short periods of time, a control input should
be used that will afford (a) a close approach to a steady-
state condition and (b) response amplitudes and harmonic
content (covering the frequency range of interest) large
enough to give good instrument and reading accuracy yet
small enough to keep the alrcraft from departing from the
flight condition for which the response data are desired.
When flight data are analyzed, 1t appears highly desireble,
as & check on the determined transfer function, to obtain
responses from two or more Iinput shapes at a given flight
condition., A comparison of the frequency response obtained
from the same record by different methods has also proved a
useful check.,

The method involving the oscillation of an aircraft
through use of sinusoidal control inputs requlres a large

amount of flight time but a relatively simple analysis.

78
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Satisfactory data may be obtained with a human pllot gener-
ating an approximate sinusoidal control input. For modes of
alrcraft motion which are nearly critically damped, the
large amount of flight time can be reduced somewhat since
continuous records may be taken while the frequency of
oscillation 1s slowly changed to cover the frequency range
desired.

Two manual Fourier methods of analyzing arbitrary
inputs and their responses were investigated, In the first
approach, analytical expressions within discrete intervals
are fitted to the time response and input, and terms-of the
Fourler integral are obtained analytically. In the second
approach, the time response and input functions at selected
times are first multiplied by the sine and cosine functions
appearing in the Fourler integral and the resulting product
curves are integrated numerically. The first apprcach
appears to be basically more accurate when utilizing manual
computing but is not as flexible or as suited to machine
calculations as the second approach. Special machines for
accomplishing a Fourler analysis, such as the Fourier syn-
thesizer and Coradi harmonic analyzer, afford a means for
signiflicantly reducing calculation time as compared to a
manual approach. The two machines mentioned give results
comparable to those obtained by the usual manual procedure

in numerical Fourier analyses. Because of its principle of



80

operation, the Coradl harmonic analyzer appears to be
basically more accurate than the Fourier syntheslzer and,

in general, gave satisfactory results out to somewhat higher
frequencles. The Coradi harmonic analyzer appears more
éapable of handling random variastions than the Fourier
synthesizer. The mechanical application of the numerical
Fourlier analysis through use of punch-card calculating
machines (for example, IBM equipment) 1s a means for appre-
clably reducing calculation time. This approach appears to
afford the possibility of obtalning greater precision in

the calculations since the rapid computation makes feasible
the use of smaller time intervals combined with more compli-
cated and precise integrating formulas.

The exponential-approximation and Donegan-Pearson
methods establish an analytical expression for the transfer
functlion which, 1n terms of the imaginary frequency variable,
is continuous in frequency. The Fourler analysis, in con-
trast, does not furnish analytical expressions and gives
values of frequency response only at selected frequenciss.
The Donegan-Pearson and Prony methods can be used satis-
factorily when reasonable confidence exists as to the
analytical forms of the transfer function (since the form
rust be assumed In advance). This approach will not,
however, detect detalls of the frequency response that

cannot be approximated by the assumed form even if such
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characteristics exist in the time response. In contrast,
Fourier analysis will detect all details of the freguency
response which are within the accuracy of the measurements
and the calculation procedure. The exponential-approximation
method 1s best suited for lightly damped systems where the
control input closely approximates a step or is of a form
that possesses a simple Laplace transform. The longitudinal
transfer functlons of oscillatory aircraft can often be
determined by simple, direct computation from the measuresd
period, damping, steady-state value of the response, and
phasing of the time response. Nonosclllatory transients
that do not afford direct approximation of the response mey
be approximated by a least-squares procedure known as the
Prony method. The Donegan-Pearson method appears best
suited to systems that are not highly osclllatory and works
well for inputs that are not necessarlly represented by
analytical expressions. When least-squares procedures must
be applied in the Prony method, the Donegan-Pearson method
generally affords shorter calculation time. When more than
a few dlscrete frequencies are desired, the Donegan-Pearson
method affords a more rapid approach than manual Fourler
gnalysis.

Fourier methods are more critical to the forms of the
Input than the Donegan-~Pearson method and inputs should be

chosen to avold regions of low harmonic content in the
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frequency range of interest. Although the Donegan-Pearson
method appears to interpolate satisfactorily over regions
of low harmonic content, it does not appesr to be applicable
to large extrapolation in either the frequency or time
domain., 1In the use of thils method, as in the Fourier

me thods, 1t 1s necessary to obtaln date which closely
approach the steady atate in order to predict accurately

the low~frequency-response charscteristics.
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APPENDIX A

ESTIMATION OF THE ERRORS ENCOUNTERED USING A
CONTROL INPUT THAT CHANGES IN FREQUENCY
AT A CONSTANT RATE

Much of the extensive flight-test time involved in
obtaining frequency-response data by using a sinusoidal
input can be ellminated 1f the sinusoildal input 1s con-
tinuously changed in frequency at & slow rate. Since
transients are constantly being introduced and dying out
because of this constantly changlng frequency, the error
‘introduced by assuming that the response to this wave
approximates the steady-state response to a constant-
frequency wave may, at any given frequency, be a function
of the natural frequency and damping of the airplane as well
as the rate at which the frequency is changed. Investiga-
tion of the magnitudes of these errors in amplitude and
phase angle based on the response of the airplane to &
constant-frequency sinusoidal input was performed as
follows:

If a wave férm of constant amplitude and constantly
changihg frequency 1s compared with a sinusoidal wave form
having the same amplitude but constant frequency, there will
occur, at a time herein assumed to be zero, a condition

where the amplitude and instantaneous frequency of the two

8L
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waves will be identical. 1In the following derivation, the
frequency at this Instant is deflned as w, and the two
waves are adjusted so that at this instant both waves are
at their maximum amplitude. A second-order system ls con-
sidered. The differential equation relating the response

of the system to a constant frequency input 1ls then

<~—-é.+——n+])x=cosmot (A1)

Similarly, for the varylng cosine wave, this differential

equation 1is

(P._Z...+?_§-D+ 1):( = cos(wg *+ Ct)t (A2)
wna Wn

Comparison of the two inputs show that their differ-
ence 1s effectively a phase difference which varies as the
perabola g = Ct2. Since a time -response solution of
equation (A2) was too cumbersome to be feasible, a linear=~
phase relationship was chosen that would approximate ths
parabolic-phase relationship and would afford a relatively
simple time-response solution. A wave having a linear-phase
difference with a constant-frequency wave 1is, of course,
another constant-frequency wave of a different frequency.

Although a constant-frequency wave would not appear to be a



86

good approximation to the variable-frequency wave under
consideration, it will be shown that the difference between
the original constant-frequency wave and the varying-
frequency wave may be closely approximated by the difference
between the two constant-frequency waves within the reglon
of interest provided thelr frequencies are properly selected.
The procedure used for establishing the frequency of
the wave used in the spproximation, in terms of the rate of
change of frequency of the variable-frequency wave, 1ls as
follows: The actual phase-angle variation and the assumed
approximation are illustrated in Figure 20. The time
interval over which the actual phase-angle variatlion was
approximated was the interval whilich would enable transients
Introduced by the varying-frequency wave to reduce to one-
twentleth of their initial value (—Tl/gggt :< O). The
parabola was approximated by a straight line chosen to pass
through the parabola at the times t = 0 and t = —% T1/20,
The approximation was chosen to balance the areas between
the parabola and the straight line in the reglon of interest.
Substitution of the approximate phase angle into the
varying-frequency input for the right-hand side of
equation (A2) gives

COE(“)O o % CT1/20>t (AS)
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2
= -4 2\ =
The relationships T = zi— and Dw = =——={uwot + Ct ) = 2C
1/20 W, dtZ( o

may be substituted into equation (A3) to glve
Dw
cos (“’o - §wn)t (aly)

For an example case where Dy = 1 radian per second

per second and w, = 8 radians per second, the original
constant-frequency wave (eq. (Al)) and the varying-frequency
wave (eq. (A2)) are shown in Figure 21 toéether with the
wave used to approximate the phase-angle relationship
between the original two (eq. (AL)). 1In addition, the dif-
ference betwsen the original constant-frequency wave and the
varying~-frequency wave 1s compared in Figure 21 with the
difference between the original constant-frequency wave and
the wave used in the approximation of the phase-angle
relationship.

The errors in phase and amplitude incurred in the
response of the second-order system and caused by the use of
a varying-frequency-wave Input Instead of a constant-
frequency-wave input may be obtained by determining the
difference between the phase angles and amplitude ratios

obtained from these two Inputs. These errors are given by
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Dw &
cos wyt co8 (% - Tw_ (45)
x: -
© p? 2t 2 2t
-**-é-‘i';';—D‘l'l 2+‘3-—D+l
Wy n w, n

The substitution of D = juw for the response to cos gt

o}

and the substitution of D = j(wo - %%;) for the response

Dw

to cosQno - 1;?)t will, at t = 0, glve the error relation-
n

ship in terms of amplitude and phase angle

1
!xe(O)' = > 2 5 ”
1 - (?—9) + |2t ]
Wn Wn
1
2 2
- <“’o _ _Dw )2 2;(9_0_ ) Du)
W > © >
n an n w
e % 2g<££3, . .@g%>
g = -tan~1 “n + tan™t - gwn
€ 2 2

Various values of damping ratio &, frequency
ratio wo/mn, and the rate of change of frequency ratilo

Dw/wnz were substituted into the foregoing relations in
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order to obtain plots of phase error and amplitude error
(related to the response to a pure sinusoldal input) at zero
time. Figure 22 presents plots of these errors over a range
of values of parameters pertinent to most aircraft. This
figure indicates that the errors increase rapidly with a
decrease in the value of dampling ratio below 0.707. At low
values of dampling ratlio, excessively large errors will be
obtained unless the frequency 1s varied at an extremely low

rate in the vieinity of 235 = 0.0. The greatest errors in
w

n
all cases appear to occur in the vicinity of the natural
frequency, the errors approaching zero at high and low values
of the frequency ratio.

For the tests presented iIn the body of thils paper,
the airplane tested had a damping ratio of about 0.7. The
rate of change of frequency for these tests was not constant
but rather was held constant at one frequency for several

oscillations before progressing to a new frequency. However,

averaging over a range of frequencies gave an average value

2

n_ of 0.06. Figure 22 indicates an error in

of Dw/w
ampllitude and in phase angle of less than 10 percent for the
alrplane tested at these conditions. This error falls

within the scatter shown in Figure 3.
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APPENDIX B

METHODS OF FOURIER ANALYSIS WHEREIN THE TRANSIENTS
ARE REPRESENTED BY A SERIES OF POLYNOMIALS

A representation of an approximate step-control input
and the time response of pitching velocity of the fighter as
shown in Figure 5 involved the division of the input into
three intervals of time and the division of the response
into five intervals of time,

The 1input, which reaches a steady-state value of
0.74° at t = 0.10 second, was represented within the inter-

vals by the equations

5y(t) = 20t° (0=t = 0.05)
51(t) = 13.8t - 0.64 (0.05 £t = 0.10)
55(t) = 0.74 (0,10 £ ¢ £ a)

The Fourier transform of the input is then

0.05 » 0.10
2o‘j; t2e~Jutay +‘j; o5 (13:8% - 0.6l)e 39t +

i

5(w)

L ~jut
O'7u\/;.1o ° ar

1%,8¢-0-10J® _ 17 ge=0-05]w . h0<1 _ e—0.0Sjw)

h)z wa
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or in trigonometric form

6(w) = léég cos 0.10w =~ 1158 cos 0.05w - 10 sin 0.05w +

W LY W

we w?

QQ (1 - cos 0.0Suz} (Bl)

W

3[%14@ sin 0.050 - 4228 s1n 0,100 +

where the substitution of selected values of frequency w
will afford the real and imaginary coefficients of the
Fourler transform at each frequency chosen.

The time response of pitching velocity, shown in
Figure 5, was divided into discrete intervals and the

coefficients of the cubic equation

De(t) = at? + bt® + ot + 4

were found as follows:

For the time iInterval O B t s 0.10, inspection of
the curve indicates that 1t may be closely approximated by
a cubic without lower-order terms so that b =c¢ =4 = 0

and, at t = Oelolsecond, the relationship 1s written
De(t) = at?
0.0049 = a(0.10)3

L.9 = a
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The equation for this time interval becomes

Dey(t) = 4.ot>

For the time interval 0.10 S t s 0.30, a quadratic
representation, since the transient in this interval does
not indicate the need of a cublic representation, will be
assumed where the coefficlients are found by the solution

of the followlng equations:

pe(t = 0.10) 0.00L9 = (0.10)% + (0.10)c + 4
De(t = 0.20) 0.0489 = (0.20)% + (0.20)c + d
DO(t = 0.30) 0.0733 = (0.30)%b + (0.30)c + a

The solution by "successive subtraction" is 1llustrated here

since equal time intervals were used.

0.0049 ~0.0489

i

(0.01-0.04)b + (0.10 - 0,20)c + Frﬁ>€guLﬁ_o
(0.0} -0.09)b + (0.20 -0.30)c + (1=
9. c \H%o

H

0.0489 -0.0733

0.0440 = 0.0%p + 0.10¢
0.024)y = 0.05b + 0.10c
0.04l;0 - 0.02Lly = (0.0%3 - 0.05)b + (0.10°=
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0.0196 = -0.02b

-0.98 = b
0.734 = ¢
-0.0587 = 4

The equation for this time interval becomes

Dpy(t) = -0.98t% + 0.734t - 0.0567

£

t

<
For the time interval 0.30 = t = 0.80, the slope of
the transient 1s zero at a time of 0.55 second. Use of
this conditlon 1s desirable 1in evaluating the constants

over this interval; therefore,

De(t = 0.30) 0.0733 = (0.30)%a + (0.30)% + (0.30)c + d
DB(t = 0.55) 0.0856 = (0.55)7a + (0.55)2b + (0.55)c + 4
pe(t = 0.80) 0.0793 = (0.80)%a + (0.80)% + (0.80)c + d
D%9(t = 0.55) 0 = 3(0.55)% + 2(0.55)b + ¢

and the equation for this time interval becomes

Do, (t) = 0.152t7 - 0.4655t° + 0.3379t + 0.00862
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< <
For the time interval 0.80 = t = 1.0, the solution

of

pe(t = 0.80) 0.079% = (0.80)%a + (0.80)%b + (0.80)c + d
D6(t = 1.00) 0.0723 = (1.00)%a + (1.00)% + (1.00)c + 4
De(t = 1.20) 0.0665 = (1.20)%a + (1.20)%b + (1.20)c + d
pe(t = 1.40) 0.0636 = (1.40)3a + (1.4,0)% + (1.L0)ec + 4

gives an equation for thils time interval of

Do5(t) = 0.0354t7 - 0.09125t% + 0.0425t + 0,08565

HA

For the time interval 1.40 S t ©, the equation for

a constant value from steady state to infinity becomes
De(t = 1.40) 0.0636 = 4
Therefore,

DeLL(t) = 0,0636

The Fourler transform of the response 1s now evalu-
ated by using the foregoing analytical expressions by

summing the followlng integrals:
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jut

Do ( w) =\/;" D8(t)e YV "at

0.10
= 1.9 JZ tIe-Jtay .

0.30
jg z (0.98t2 - 0.734t + 0.0587e'j”tdt +
.1

0.80
Jg (0.192t3 - 0.4,655t% + 0.3379t +0.00862)e =@t

50

1.40 s

JF (0.0354t> - 0.09125t% + 0.0425t +
0.80

® o Jut

0.08565)e~3%tat + 0.0636
1.40

at

The integration of these terms (given in text after eqg. (6))

leads to the following relations:
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APPENDIX C

APPLICATION OF THE LAPLACE TRANSFORM TOQ
A RESPONSE EQUATION

The response equation for the normal acceleration,

a3 used In the Prony method described by Greenberg,55 is
n(t) = ngg + eat(Jl sin wt + Jp cos wt) (Cl)

where ngg 1is the normal acceleration at steady state. The

equaetion for a step control input of magnitude 60 is as

follows:

5(t) = & (t Z 0) (c2)

0]

The Leaplace transform, indicated by the operator p

when applled to equation (Cl), gives

nss le Ja(p i a)

= + + ) c
n(P) D (p ‘a)2+w2 (p -a)d+w2 ( 5)

and equation (C2) becomes

e)

8(p) =—-§- (ch)

33

Greenberg, loc. cit.

r———

100
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By definition, the transfer function is the ratio of the
Laplace transform of the output to the Laplace transform of

the input (initial conditions zero)

—
n{p) 1 . Jqwp + Jpp(p - a)
= —in
&(p) o | S8 p2 - 2ap + a® + w2
.
1 J2p2 + (le - Jga)p
- -g-—- nSS + > (CS)
o] p= + bp + k

where the substitution of b = -2a and k = a° + w° has

been made. The equatlion may be rearranged to agree with

the form of equations {(17) so that

2 ngg * J2 bnss + le - Jza knss
p© —— + p +
n 8o O %
3 (p) = 3 (c6)
p +bp +k

where the substitutlon of jw for the operator p will pro-

duce the frequency-response relationships.



APPENDIX D
AN INTEGRATING MATRIX

The Donegan-Pearson methodBu of analysis of transient
responses suggests a matrix solution which, 1if followed,
requires some knowledge of integrating matrices. An inte-
grating matrix belleved to be somewhat easier to use than
the one suggested by Donegan and Pearson35 is presented here
together with its derivation.

If an arbitrary tlme-curve 1s chosen and divided into
equal Intervals of time, then by Simpson's rule a parabola

may be described through three adjoinling points

N

3l Donegan and Pearson, loc. clt.

55 1pi4.

102
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By the use of equation (Al) given in the report by
Diederich,36

t
n 2 1
j; 1 y dt =(-152- At)yn-l + <-§ At)yn + <-E At)yn+l {D1)
Ne

Solution of equation (Dl) for values of the integers n = O,
1, 2, 3, L4, . . . m gives

ty
j; ydt =0 (n = 0)
n-1
t
n At
jl y dt = 35(5yn,1 + 8y - Tn+1) (n = 1)
n-1
tn At
J; ydt = ‘j‘_’é‘(‘iyn-g + IByn-l * 7yn = yn+1> (n = 2)
n-1
t
n _ 8t
J: y dt = 12<?yn~3 + 15yn_2 + 12Yn_1 +
n-1
7yn - 1’1+l) (I’l = 5)

36 piederich, loc. cit.
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t
JP n y 4t = %%(SYn-u + 1§yn_3 + 12y, 5 +
t
n-1

12y *+ Ty, - yn,,l) (n = 14)

t
n At
JF y dt = 35(5yn-m * 15yn-(m-sl) +
tn-l

12yn’(m_2)+ ° . o +

12y 1 *+ Ty, - yn+1> (n = m)



105

‘T -u 01 O woxy punoJ Apesa[e BOJIE 8y} O} peppe u pue T - u usemiraq JuTLT ®Boae 9y} sSoATZ yoTyM

T*UL(qv €ee€g0°0) - P£(aV 999999°0) + T"24&(2¥ 999917" 0)

Jo uorqeuMMS SATJETnUMODE 8y} sagtnbsg Apduts xtaqeuw durjexdsqul STUY JO osh 8yl

1V €€EE€Q0°0~{3V €€EE€QST |3V 000000°T |3V 000000°T |3V 000000°T {3V 000000°T |3V €€E€€Q0°T|3V L999TH" |3V 9
0 4V €€€€Q0° 0~V £€€€9S° |3V 000000°T |3V 000000°T |3V 000000°T |3V €€€€80°T|IV L99OTN" '|V S
0 0 AV €€€€00°0-|2V €€€€95° |37 000000°T |3V 000000°T |4V €€E€Q0°T|3Y L999TH" |3V N
0 0 0 97 €€€€Q0° 0~V €€€€9S° |2V 00000C°T |4V €E€€Q0°T|3V L999TN" |3V €
0 0 0 0 9V €€EEQ0°0-| 3V €EEEQS”T [V £€€EQ0° TV L9991 |9V &
0 0 o 0 0 9V €€€€80°0-|3V L99999°0|3V L999TN° 0| ¥
0 0 0 0 0 0 0 0 0
VL v 9 A £ A AR LA £\ 0 3

mIoy oy3} UT XTJjeu Surjeadoqur

8yq utr Jqeedde £ Jo squeTOTFIe00 oyl (9V JoJ enTeA ' SUIXT] 3NOYITM) WIOJ JeTnqe} UT Us}ITIH




